Joeyonng
  • Notebook
  • Pages
  • About
  • Backyard
  1. Linear Algebra
  2. 15  Positive Definite Matrices
  • Welcome
  • Notations and Facts
  • Linear Algebra
    • 1  Fields and Spaces
    • 2  Vectors and Matrices
    • 3  Span and Linear Independence
    • 4  Basis and Dimension
    • 5  Linear Map and Rank
    • 6  Inner Product and Norm
    • 7  Orthogonality and Unitary Matrix
    • 8  Complementary Subspaces and Projection
    • 9  Orthogonal Complement and Decomposition
    • 10  SVD and Pseudoinverse
    • 11  Orthogonal and Affine Projection
    • 12  Determinants and Eigensystems
    • 13  Similarity and Diagonalization
    • 14  Normal and Hermitian Matrices
    • 15  Positive Definite Matrices
  • Calculus
    • 16  Derivatives
    • 17  Chain rule
  • Probability and Statistics
    • 18  Probability
    • 19  Random Variables
    • 20  Expectation
    • 21  Common Distributions
    • 22  Moment Generating Function
    • 23  Concentration Inequalities I
    • 24  Convergence
    • 25  Limit Theorems
    • 26  Maximum Likelihood Estimation
    • 27  Bayesian Estimation
    • 28  Expectation-maximization
    • 29  Concentration Inequalities II
  • Learning Theory
    • 30  Statistical Learning
    • 31  Bayesian Classifier
    • 32  Effective Class Size
    • 33  Empirical Risk Minimization
    • 34  Uniform Convergence
    • 35  PAC Learning
    • 36  Rademacher Complexity
  • Machine Learning
    • 37  Linear Discriminant
    • 38  Perceptron
    • 39  Logistic Regression
    • 40  Multi-layer Perceptron
    • 41  Boosting
    • 42  Support Vector Machine
    • 43  Decision Tree
    • 44  Principle Component Analysis
  • Deep Learning
    • 45  Transformer
  1. Linear Algebra
  2. 15  Positive Definite Matrices

15  Positive Definite Matrices

Definition 15.1 A Hermitian (symmetric) matrix \mathbf{A} \in \mathbb{C}^{n \times n} is a positive definite (semi-definite) matrix if and only if

\mathbf{x}^{H} \mathbf{A} \mathbf{x} > 0 \quad (\mathbf{x}^{H} \mathbf{A} \mathbf{x} \geq 0),

for all nonzero vectors \mathbf{x} \in \mathbb{C}^{n}.

Theorem 15.1 A matrix \mathbf{A} is positive definite (semi-definite) if and only if its eigenvalues are positive (non-negative).

Proof

We first prove that a matrix \mathbf{A} is positive definite (semi-definite) if its all eigenvalues are positive (non-negative).

Since \mathbf{A} is a Hermitian matrix, it can be unitarily diagonalized:

\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{H},

where the columns of \mathbf{U} contains the orthonormal eigenvectors of \mathbf{A} and diagonal of \mathbf{\Lambda} has the corresponding real eigenvalues.

Since we are told all eigenvalues are positive or non-negative(TODO),

\mathbf{\Lambda} = \mathbf{\Lambda}^{\frac{1}{2}} \mathbf{\Lambda}^{\frac{1}{2}} = \mathbf{\Lambda}^{\frac{1}{2}} (\mathbf{\Lambda}^{\frac{1}{2}})^{H}

Thus,

\begin{aligned} \mathbf{A} & = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{H} \\ & = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} (\mathbf{\Lambda}^{\frac{1}{2}})^{H} \mathbf{U}^{H} \\ & = \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} (\mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}})^{H} \\ \end{aligned}

Multiplying \mathbf{A} with \mathbf{x} to get

\begin{aligned} \mathbf{x}^{H} \mathbf{A} \mathbf{x} & = \mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} (\mathbf{\Lambda}^{\frac{1}{2}} \mathbf{U})^{H} \mathbf{x} \\ & = \mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} (\mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}})^{H} \\ & = \lVert \mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \rVert^{2} & [\mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \in \mathbb{C}^{n}]. \\ \end{aligned}

Since \lVert \mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \rVert^{2} is non-negative for any vector \mathbf{x}, the matrix \mathbf{A} is positive semi-definite.

If all eigenvalues are positive, there is no zero in \mathbf{\Lambda}. Since \mathbf{\Lambda}^{\frac{1}{2}} is a diagonal matrix, the matrix \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} has scaled columns of \mathbf{U}. Since \mathbf{U} is a unitary matrix, its columns are all linearly independent and thus \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} also have linearly independent columns. Thus, \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} has full rank and

N (\mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}}) = \{ 0 \}.

Thus, \lVert \mathbf{x}^{H} \mathbf{U} \mathbf{\Lambda}^{\frac{1}{2}} \rVert^{2} > 0 for any non-zero vector \mathbf{x}. Therefore, the matrix \mathbf{A} is positive definite.

Then we prove that all eigenvalues of positive definite (semi-definite) matrices are positive (non-negative).

Consider any eigenpair (\lambda, \mathbf{v}) of \mathbf{A}.

Since \mathbf{v} is non-zero by the definition of eigenvector, we have

\begin{aligned} \mathbf{A} \mathbf{v} & = \lambda \mathbf{v} \\ \mathbf{v}^{H} \mathbf{A} \mathbf{v} & = \lambda \mathbf{v}^{H} \mathbf{v} \\ \mathbf{v}^{H} \mathbf{A} \mathbf{v} & = \lambda \lVert \mathbf{v} \rVert^{2} \\ \lambda & = \frac{ \mathbf{v}^{H} \mathbf{A} \mathbf{v} }{ \lVert \mathbf{v} \rVert^{2} } \end{aligned}

Since \mathbf{A} is positive definite (semi-definite),

\mathbf{v}^{H} \mathbf{A} \mathbf{v} > 0 \quad (\mathbf{v}^{H} \mathbf{A} \mathbf{v} \geq 0),

which means

\lambda > 0 \quad (\lambda \geq 0).

Theorem 15.2 Positive definite matrix always has full rank.

Proof

We prove by contradiction.

Suppose a positive definite matrix \mathbf{A} does NOT have full rank, which means that there exists at least one non-zero vector \mathbf{x} \in N (\mathbf{A}) such that

\mathbf{A} \mathbf{x} = 0.

Then, multiplying both sides by \mathbf{x}^{H},

\mathbf{x}^{H} \mathbf{A} \mathbf{x} = 0.

which contradicts to the fact that \mathbf{A} is positive definite.

Thus, positive definite matrix always has full rank.

TODO \mathbf{A} = \mathbf{B}^{H} \mathbf{B}

14  Normal and Hermitian Matrices
16  Derivatives